G) BAR OF SEMI-CIRCULAR CROSS SECTION

The geometric factor for an <u>infinitely long bar</u> of semicircular cross section is included in (d):

$$Q = G \frac{V}{S}, \qquad G = \frac{2\pi B}{F}$$

where $F = F(\frac{a}{s})$ is shown at page 33.

The value of F for a = 10·s is $F(\frac{a}{s} = 10) = 1,038$, or $G(\frac{a}{s} = 10) = 0,963 \cdot 2 \, \text{Tr} s$.

When a \geq 10s, then 0,963 \cdot 2 π s \leq G \leq 2 π s, where 2 π s is the geometric factor for a semi-infinite volume.

The deviation of G from $G = \frac{2\pi s}{F}$ for a <u>bar of finite</u>

length 21 can be estimated from the special case of a box-shaped bar treated by Hansen (d), see p. 31, as the rectangular shape with $h = \frac{1}{2}$ a is not very different in this context from a semi-circular cross section with diameter a.

So, on the basis of (d) we estimate that when $21 \ge 3s + \frac{1}{2}a$, then $0.98 \frac{2\pi s}{F} \le G \le \frac{2\pi s}{F}$.