Measurement of Sheet Resistivities with
the Four-Point Probe

By F. M. SMITS

(Manuseript received October 15, 1957)

Correction faclors are evaluated for the measurement of sheet resistivities
on two-dimensional rectangular and circular samples with the four-point
probe. Diffused surface layers can be treated as two-dimensional structures,
but the factors are also useful in obtaining body resistivities on thin samples.

I. INTRODUCTION

The “four-point probe” has proven to be a convenient tool for the
measurement of resistivities. For a description of the method see a paper
by L. Valdes,! which gives the functional relationship between the re-
sistivity, p, and the voltage and current readings for various geometries.
Later, A. Uhlir evaluated functions® which give the relationship for
additional geometries. All these treatments are concerned with three-
dimensional structures infinite in at least one direction.

For diffused layers, a similar relationship is needed for the evaluation
of sheet resistivities on various sample shapes. This is a two-dimensional
problem which is treated here for various finite sample sizes. With the
solution, however, it also is possible to obtain body resistivities on thin
slices of the same finite geometries.

II. METHOD

A current source in. an infinite sheet gives rise to the logarithmic po-
tential '
Ip,

R
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where ¢ is the potential, I the current, p, the sheet resistivity and r the
distance from the current source.

In particular, the potential for a dipole (4 source and — source) be-
comes
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In the case of a four-point probe on a sheet, the two outside (current)
points represent the dipole. Therefore, the potential difference between
the two inner points is, for an infinite sheet,

1p,

™

Ao =V = In 2

(only equal point spacing is considered). Thus, the sheet resistivity is
obtained as

To obtain the sheet resistivity on a finite sample, the method of images
can be applied.?! Only nonconducting boundaries are considered; the
boundary (edges) of a diffused layer must be etched or else the layer on
the back side of the sample would act as a shunting path.

III. RECTANGULAR SAMPLE

We consider a four-point probe on a rectangular sample with the
dimensions a and d. The probe is arranged symmetrically with point spac-
ing s according to Fig. 1. To obtain the voltage between the two center
points 1 and 2, an infinite arrangement of dipoles must be considered,
as shown in Fig. 2. All contribute to the voltage between points 1 and 2.

F. Ollendorff! gives the potential distribution for an infinite number of
current, sources, arranged in a line and equally spaced. With a coordinate
system as in Fig. 3 the potential is

_ ng = 2T : 2T
¢ — @ = 271_1112/‘/5111 &:U-I—smh&y.
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Fig. 1 — Arrangement of a four-point probe on a rectangular sample.
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Tig. 2 — System of images.

With this expression the present problem is reduced to a summation of
lines of current sources with alternating sign in only one direction. In
the coordinate system for every line of sources the points 1 and 2 have
the x-coordinate zero. Thus the expression simplifies to:

Loy, (e — ™),

‘P—‘Po=“—2ﬂ_

Iach line of sources thus contributes to the voltage V' the amount

[ T (yn+s)/d —7 (yn+s)/d
A(Pn - —2 ].11

T efynfd _ e—rym’d

where 7, is the distance from point 1 to the center source in line n. The
dimension @ is involved in the values 7, . The total voltage between the

® ® ® H—D— D @

le— d -l

Tig, 3 — Coordinate system for a linear arrangement of current sources.
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points 1 and 2 is therefore

1
V = ZAp, = .D.JC (ﬂ',_ d)

d’ s
where C(a/d; d/s) is a constant defined by this equation. As shown in
the Appendix, the summation can be done easily by expanding the
logarithm and summing each term as a geometrical series. In almost all
cases, the first term gives four-place accuracy. The sheet resistivity is

thus given by
V . fa d
=70 (d’ s)'

Table I gives this factor C for various geometries.
TFor small d/s the quantity C' = (s/d)C is close to unity. In these
cases the sheet resistivity can be expressed as:
Vi JVd
Ps 7 P ~ 7 s .

TaBLE I — CorrrecrioNn Factor C ForR THE MEASUREMENT OF SHEET .
REsisTIVITIES WITH THE FoUR-PoiNnT PROBE

d/s circle diam d/s ajfd =1 ajd =2 ajd = a/d = 4
1.0 0.9988 0.9994
1.25 1.2467 1.2248
1.5 1.4788 1.4893 1.4893
1.75 1.7196 1.7238 1.7238
2.0 1.9454 1.9475 1.9475
2.5 2.35632 2.3541 2.35641
3.0 2.2662 2.4575 2.7000 2.7005 2.7005
4.0 2.9289 3.1137 3.2246 3.2248 3.2248
5.0 3.3625 3.5098 3.5749 3.5750 3.56750
7.5 3.9273 4.0095 4.0361 4.0362 4.0362
10.0 4.1716 4.2209 4.2357 4.2357 4.2357
15.0 4.3646 4.3882 4.3947 4.3947 4.3947
20,0 4.4364 4.4516 4.4553 4.4553 4.4553
40.0 4.5076 4.5120 4.5129 4.5129 4.5129
] 4.5324 4.5324 4.5324 4.5325 4.5324
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TaBLe Il — Correcrion IFacror C’ ror THE MEASUREMENT OF
SueeT RESISTIVITIES WITH THE FoUuRr-PoinTt PROBE ON NARROW
STRUCTURES

a/d = 4

d/s i a/d =1 } a/d =2 ‘ a/d =3 ‘
1.0 e | 0.9988 | 0.9994
1.25 | 0.9973 0.9974
1.5 | 0.985¢ 0.9920 | 0.9929
1.75 l 0.9826 [ 0.9850 ‘ 0.9850
2.0 0.9727 [ 0.9737 0.9737
2.5 | [ 0.9413 ‘ 0.9416 ! 0.9416
3.0 0.8102 0.9000 ‘ 0.9002 0.9002
4.0 0.7784 0.8061 0.8062 0.8062
I

. Table IT gives (' for various geometries. The table may be used to deter-
mine the error one makes by just approximating with ¢’ = 1.
IV. CIRCULAR SAMPLE

In this case, only one image is necessary to fulfill the boundary condi-
tion. The image is obtained by “reflecting” the dipole on the circle.®
For a four-point probe centered in the sample, the voltage becomes:

i
. Ip (5) + - 1
V="m24+In|{H—]|=Ip. 7~ »
” (-2 ()

ey _ . o (®

§ ‘ s
where d is the diameter of the circle. The correction factor is also given
in Table L.

o

(V)

V. MEASUREMENT OF BODY RESISTIVITIES ON THIN SAMPLES

On a slice of finite thickness w, the four-point probe will introduce
voltage gradients perpendicular to the surface. Insofar as these gradients
are negligible, the slice can be treated in the same way as an infinitely
thin slice and the proper sheet resistivity can be obtained, thus giving
the body resistivity p with the relation p = psw.
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As mentioned, for a four-point probe on an infinite sheet the following
relation holds:

_V o
P =g

In2°

For an infinite slice of finite thickness w, one can express the resistivity

as
' V w
= 5 [ —_— F —_
S el MY (s)
where F"(w/s) is a correction factor approaching uni’t.y as w approaches
Zero. -

From Uhlir’s paper? F(w/s) can be obtained; it is tabulated in Table
III. This table may serve to evaluate the error one makes by treating
thin samples as an infinitesimal sheet. For a finite sample, F(w/s) could
be used as a first order correction, thus giving the resistivity of a slice
asp = p, w = (V/I)w C F. The exact treatment would require the sum-
mation of the potential from an infinite three-dimensional array of di-
poles,

TaBLE III — MEASUREMENT oF Bopy RESISTIVITIES p ON THIN
SaMpPLES oF THICKNESS w

w/s F(w/s)
0.4 0.9995
0.5 0.9974
0.56565 0.9948
0.6250 0.9898
0.7143 0.9798
0.8333 0.9600
1.0 0.9214
1.1111 0.8907
1.25 ‘ 0.8490
1.4286 0.7938
1.6666 0.7225
2.0 0.6336
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APPENDIX
Summation of A @,

Without loss of generality the following substitutions are made:
d is used for(—i , a for g’ , and y for g .
s

From symmetry reasons, it follows that each source in the upper half of
the plane (Ilig. 2) contributes the same A ¢, as does the corresponding
source in the lower half. Thus only the sources in the lower half are to
be considered and the result must be multiplied by 2.
The terms
—In (™" — &™)
are first written in the form
—In ™ (1 — ) = —wg —In (1 — v,

With this one obtains
27
[ 1] ps

with + standing for a positive source and — for a negative source. Sum-
ming the first term gives =/d.
To sum the In terms the logarithm can be expanded:

—In(l —2)=z+ 32+ 334 ...

With this, each term in n becomes

Ag, = :|:|:—g —In (1 — ™ty 4 (1 — 6_2”’"“)].

)

E l [cfzx(y,.+l)m,’d _ 8—2:1}"”1!&].
m=1 M

The y. can be expressed as
Yo = A; + n2a
with four different A;. With this, each term in m becomes

4 o
o= 55 o L (gt onts )
i=1 n=0 m

@

This is a geometrical series in n. Forming > gives
n=0

4

- 1 ef?ﬂyu!d _ 1 B .
Ay = E , = — Q ﬂermr,’d‘
i=1 m (1 —_ e"‘l'ﬂ'am,‘d)
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Tor reasons of convergence, 3 = 1 is treated separately. The A; thus
become

for 4+ sources:

Ar=a+1

Ay = 2a — 2
for — sources:

A =2a + 1

Ay = a — 2.

4
Forming Y (—1)%¢ *™*™ and inserting into the expression for a
i=]

gives
—Srm,’d)(l _ e—-ZrmId)

_ 1 ora—2ymid (1—e
Ay = — ¢ (1 + e——2rum,‘d‘)

The total voltage between points 1 and 2 is therefore

V = Ip, }r I::; +In(l—e™ —In(l - + E a,m] .

=1

In all but three cases the first term in m gave four-place accuracy.
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